Analogues of Chaitin's Omega in the computably enumerable sets

نویسندگان

  • George Barmpalias
  • Rupert Hölzl
  • Andrew E. M. Lewis
  • Wolfgang Merkle
چکیده

We show that there are computably enumerable (c.e.) sets with maximum initial segment Kolmogorov complexity amongst all c.e. sets (with respect to both the plain and the prefix-free version of Kolmogorov complexity). These c.e. sets belong to the weak truth table degree of the halting problem, but not every weak truth table complete set has maximum initial segment Kolmogorov complexity. Moreover, every c.e. set with maximum initial segment prefix-free complexity is the disjoint union of two c.e. sets with the same property; and is also the disjoint union of two c.e. sets of lesser initial segment complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing 80 Initial Bits of A Chaitin Omega Number : Preliminary

A Chaitin Omega number is the halting probability of a universal Chaitin (selfdelimiting Turing) machine. Every Omega number is both computably enumerable (the limit of a computable, increasing, converging sequence of rationals) and random (its binary expansion is an algorithmic random sequence). In particular, every Omega number is strongly non-computable. The aim of this paper is to describe ...

متن کامل

Computing a Glimpse of Randomness

A Chaitin Omega number is the halting probability of a universal Chaitin (selfdelimiting Turing) machine. Every Omega number is both computably enumerable (the limit of a computable, increasing, converging sequence of rationals) and random (its binary expansion is an algorithmic random sequence). In particular, every Omega number is strongly non-computable. The aim of this paper is to describe ...

متن کامل

Exact Approximations of omega Numbers

A Chaitin Omega number is the halting probability of a universal prefix-free Turing machine. Every Omega number is simultaneously computably enumerable (the limit of a computable, increasing, converging sequence of rationals), and algorithmically random (its binary expansion is an algorithmic random sequence), hence uncomputable. The value of an Omega number is highly machine-dependent. In gene...

متن کامل

Optimal asymptotic bounds on the oracle use in computations from Chaitin's Omega

Chaitin’s number Ω is the halting probability of a universal prefix-free machine, and although it depends on the underlying enumeration of prefix-free machines, it is always Turing-complete. It can be observed, in fact, that for every computably enumerable (c.e.) real α, there exists a Turing functional via which Ω computes α, and such that the number of bits of Ω that are needed for the comput...

متن کامل

Definable encodings in the computably enumerable sets

The purpose of this communication is to announce some recent results on the computably enumerable sets. There are two disjoint sets of results; the first involves invariant classes and the second involves automorphisms of the computably enumerable sets. What these results have in common is that the guts of the proofs of these theorems uses a new form of definable coding for the computably enume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2013